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Ising model with competing next-nearest-neighbour interactions 
on the Kagome lattice 
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Institut fur Theoretische Physik, Freie Universitat Berlin, Arnimallee 14, D-1000 Berlin 
33, Federal Republic of Germany 

Received 29 October 1987 

Abstract. Starting from a model for CsOH.H,O we investigate the phase diagram of a 
two-dimensional lsing model on the Kagome lattice with antiferromagnetic nearest- 
neighbour and competing ferromagnetic second- and third-nearest-neighbour interactions 
by Monte Carlo simulations. We obtain two Kosterlitz-Thouless transitions as in the 
six-state clock model and a crossover to second-order transitions where the critical 
exponents are consistent with those of the three-state Potts model. We also determine the 
ground state for all values of the coupling constants. 

1. Introduction 

There are many crystals with two-dimensional hydrogen bonding (Matsuo and Suga 
1981). One example is CsOH.H20 (caesium hydroxide monohydrate), which crystal- 
lises in layers of alternating Cs+ ions and nets of H,O;, almost identical to normal 
hexagonal ice (Stahn et a1 1983). The oxygens form a honeycomb lattice with the 
protons sitting on two positions between them as in ordinary ice. If we connect the 
mean positions of neigbouring hydrogens, we obtain a Kagome lattice. The two 
positions can then be represented by an Ising spin, which is shown in figure 1. Since 
one expects the protons to disorder even at moderate temperature, an antiferromagnetic 
nearest-neighbour ( N N )  coupling should be the dominant one. This excludes also the 
H30+, 02- configurations at low temperatures, which are not observed experimentally. 

Figure 1. ( a )  CsOH.H,O, projected into the a-a-plane. Open circles (0) refer to the 
oxygens and full ones (0)  to the hydrogens. The Cs+ ions are located at i c  between two 
H,O; layers. ( b )  Conversion into an Ising model. J , ,  J , ,  J ,  denote the nearest- and 
next-nearest-neighbour interactions. 

0305-4470/88/092195 + 15$02.50 0 1988 IOP Publishing Ltd 2195 
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The Kagome-Ising antiferromagnet ( KAF), first investigated by Kano and Naya 
(1953), is like the triangular case disordered at all temperatures, but possesses a much 
larger zero-point entropy per spin of 0.502k as compared to Wannier’s result of 0.338k 
for the triangular lattice (Wannier 1950). Siito has noticed that the KAF is ‘superfrus- 
trated’, which means that the correlation function at T = 0 decays exponentially in 
contrast to the algebraic decay in the triangular case (Siito 1981). The KAF has obviously 
no phase transition and would be only a poor model for CsOH.H,O. It is of course 
possible to choose anisotropic antiferromagnetic coupling constants; however, this 
destroys the symmetry. Therefore we will introduce next-nearest-neighbour ( N N N )  

interactions and consider the Hamiltonian 

Kagome square 

H = -J1 C U~U, - J 2  1 U~U, - J 3  U~U, 
N N  N N N 2  N N N 3  

where U, = *1 and the sums run over N N  and N N N  pairs, as indicated in figure 1. As 
pointed out, we consider antiferromagnetic N N  coupling J1 < 0. The ‘Kagome’ refers 
to the second-neighbour interaction J 2 ,  which couples the spins of each of three 
Kagome sublattices. The ‘square’ refers to the third-neighbour coupling J3 on each of 
three rhombic square sublattices. Considering the distances between the protons in 
figure 1, we expect, that both J2 and J3 will be ferromagnetic ( J 2 ,  J3 > 0). 

As has been pointed out before in the case of the triangular lattice by several 
authors (Kanamori 1985 and references therein, Brand and Stolze 1986), we will find 
a rich structure of possible ground states. Varying the temperature in a Monte Carlo 
procedure, we obtain in the special cases of zero J2 or J3 coupling two Kosterlitz- 
Thouless transitions. As we will show, in this case our model belongs to the universality 
class of the six-state clock model. In the case of antiferromagnetic N N  and ferromagnetic 
N N N  coupling on the triangular lattice, such behaviour has also been observed (Landau 
1983). Since the J2 and J3 couplings favour ordering on two different types of sublattices 
of a frustrated system, they are competing with each other and we get crossover effects. 
If J2 = J 3 ,  the ground state is infinite degenerate and can be described by a modified 
KDP model. But there is still some order, which gives rise to a three state Potts transition 
at a non-zero critical temperature. In the next section we determine the ground states 
for all possible coupling constants and discuss the special case where J 2 = J 3  in the 
following section. Then we come back to thermodynamics, which is studied by the 
Monte Carlo method and analysed by finite-size scaling. 

2. Ground states 

To obtain the ground states of our model, we will use a method first introduced by 
Kanamori (1966), which has been taken up and modified by other authors (Brandt 
and Stolze 1986). Here we will follow the notation of Brandt and Stoke. We first 
rewrite the Hamiltonian (1) as 

to obtain 
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Now the energy is a linear function of the two-spin correlation coefficients c,, c2 and 
c 3 .  Of course by definition the coefficients ci are restricted by 

-1 S ci S $1 i = 1,2, 3. (3) 

In the next step we construct more efficient restrictions, which are linear inequalities 
of the type 

b s a l c ,  + azcz+ a3c3 (4) 

where the coefficients a, and b are given in table 1. 
There is a systematic way to find these inequalities; however it is also a procedure 

of trial and error, as we will illustrate shortly. In order to understand inequality 1 we 
consider a small cluster of three N N  spins ul, u2 and u3 in a triangle. Obviously one 
finds 

-1 S u l a 2 +  u 2 u 3 - k  (+3(+1 3 ( 5 )  

for the two cases of ferro- and antiferromagnetic arrangement. Summing over all 
triangles in the lattice as before in the Hamiltonian, we get 

-1 S 3 c l  S 3 .  ( 6 )  

The first inequality is number 1, the second turns out to be superfluous, since other 
inequalities in our list are stronger. Now we can arrange three spins in a row and 
obtain again from (5) 

-1 < *2c, + c3 (7) 

where c3 comes from the summation over all J3 bonds. Again one can throw away the 
inequality with + and that with the - gives inequality 4. The most complicated cluster 
that we had to consider consists of two triangles sharing one corner (inequalities 6 
and 7). Geometrically the ten inequalities in table 1 generate a three-dimensional 
convex polyhedron. For allowed energies equation (2) describes a plane which cuts 
the polyhedron. The energy reaches its extreme values if the plane just touches one 
corner of the polyhedron. If it touches an edge, there is a phase boundary. The 
inequalities in table 1 lead to nine corners of the polyhedron, which are listed in 
table 2. 

Table 1. Coefficients a, ( i  = 1,2,3) and b of equation (4). 

Inequality b a, a2 a3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

-1  
-1 
-1 
-1 
-1 
-1  
-1  
-1 
-1 
-1  

3 0 0 
0 3 0 

-2 1 0 
-2 0 1 

2 0 1 
3 1 1 

-1 1 1 
1 -1 -1 

-1 1 -1 
-1  -1 1 
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Table 2. The parameters c, ( i  = 1,2,3) and structure of the nine corners of the polyhedron 
derived from the inequalities of table 1. 

Corner C I  c2 c3 Structure 

1 1 
1 

I I 
3 3 

3 1 _ -  
_ -  _ -  

0 0 
I 

I I 
3 - 5  
I 1 
3 3 
I I 
3 3 
1 I 

0 -7 
-- 
-- 

_ -  

3 -5 

1 

1 
-1  

I 
3 

_- 

2 

I 
5 
1 
3 
1 
3 
I 
3 

-~ 

_ -  

_ -  

The main problem is now to find a spin configuration, which corresponds to the 
calculated values of the c,. Now it could turn out that it is impossible to find a spin 
structure for some corners. Then one has to construct stronger inequalities which 
eliminate these fictitious corners. Systematically one starts with small clusters and 
ends with bigger ones. Figure 2 shows the phases corresponding to the corners in table 
2. Now it is easy to obtain the phase diagram by considering (2). For both positive 
and negative J ,  only seven phases appear, as one can see in figure 3. 

As we have pointed out in Q 1, we are interested in antiferromagnetic J ,  coupling 
and smaller ferromagnetic J2 and J3 couplings. If then J2 dominates, we get ground 
state number 2, which is characterised by ferromagnetic ordering on the three Kagome 
sublattices and by the frustration condition for the N N  triangles. Analogously we 
obtain the ground state number 3, if J3 dominates and we now have ferromagnetic 
ordering on the three square sublattices. Both ground states are sixfold degenerate. 
As we will see later, this is connected to the appearance of a critical behaviour as in 
the six-state clock model. 

3. Phase boundary J2 = J3 

As is well known, competing interactions in Ising models can give rise to infinite 
degenerate ground states and modulated phases (see Yeomans 1984 and references 
therein). The most prominent case is that of the A N N N I  model. In our case where 
J2 = J3 > 0 and J ,  < 0 the phases 2 and 3 can be mixed in such a way that the domain 
boundaries cost no energy. At first sight this problem looks very complicated, since 
we have to match different spin patterns. The problem can be simplified by an argument 
similar to the two-dimensional A N N N I  model (Villain and Bak 1981). 

Let us start with phase 2 (see figure 2 )  and turn around all negative spins in order 
to obtain a ferromagnet. Since the reversed spins form a regular lattice, it is possible 
to flip them also in phase 3. As can be seen in figure 4 one obtains lines connecting 
negative spins all running in one main direction. To complete the argument one must 
find out how much energy such a line costs. We observe that for J 2  = J3 the line energy 
is zero. However, they could end at the boundary between domains of phase 2 and 
phase 3. This ending of lines, and also the crossing of lines, cost energies of the order 
of J2 or J 3 ,  as one can calculate. So the ground state in this coexistence regime can 
be understood as a ferromagnet disordered by non-crossing lines of reversed spins, 
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0 0 0 0 0 0  

0 . 0 . 0 .  

. 0 . 0 .  

0 0  0 0  

0 . 0 .  a 0 . 0 .  
. . . . a  

. 0 . 0 . 0 . 0 . 0 . 0  

6 :  ( 1 x 2 1  

0 . 0 . 0 .  

0 0 . 0 0 0 . 0 0 0 . 0  

. 0 . 0 .  

0 . 0 0 0  

0 A-F-J lo: 
. 0 0 0  

0 . 0 . 0  

8 :  ( 2 x 1 )  

a . . . .  
O O O O O O O O O O O  . . . . .  
0 0 0  O a O  D 0 0 0 0 0  0*0 O m 0  . . . . .  

3: ( 1 x 1 1  

0 0 0 0 0  

0 . 0 . 0  

0 . 0 .  :*: 
0 0 0  

0 . 0  0 . 0 . 0  

a . . . .  
0 . 0 . 0 . 0 . 0 . 0  

7 ( 1 x 2 1  

0 . 0 . 0  

0 0 0 . . 0 0 . . 0 0  

0 . 0 . 0  

Om. ~--~r--- ;.: 
0 . .  

. 0 . 0 .  

9 1 2 x 1 1  

Figure 2. Spin configurations corresponding to the corners 2-9 listed in table 2. Open 
circles (0) represent the + spins and full circles (0) the - spins. The unit cells are indicated. 

which do not end. Indeed cooling in the Monte Carlo procedure leads to such typical 
configurations for J2 = J3 at low temperatures. The same argument is valid, if we start 
with phase 3 as the fictitious ferromagnet, when we then get the same lines as for 
phase 2. The disordered lines look somewhat like a graphical representation of the 
ice model on the square lattice (Lieb and Wu 1972). Since the lines cost no energy, 
all vertices have the same weight. Only vertices with crossing lines cost energy, which 
can be set equal to infinity for low-temperature investigations. 

It is not sufficient to keep J2 equal to J3 to obtain a phase diagram at low 
temperatures. Depending on the distance between lines, the line energy E varies 
between SIJ2-J31 and 121J2-J31. So the mapping onto an ice model is not completely 
rigorous. In order to proceed, we take the average value E = lO/J, - J 3 )  and make the 
identifications with the vertex weights of the modified KDP model (Wu 1967) as in 
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Figure 3. Ground-state phase diagram for ( a )  J ,  > 0 and ( b )  J ,  < 0. The numbers in the 
different regions refer to the corners represented in figure 2. 

t t t t +  
t t t t t t t t t t t  t t  t t  t t  t t  

t t t t t t t t t t t  t t  t t  t t  t t  
t t t t t  

t t t t t t t t t t t  t t t t t t t t t t t  t t t t t t t t t t ~ ~ ~ : ~ ~ ~ ~ ~  t t  t t  t t  t t  t t  t t  t t  t t  

t t t t t  
t t t t t t t t t t t  t t  t t  t t  t t  

t t t t t t + t + t t  t t  t t  t t  t t  

t t t t + t t t t t t  t t  t t  t t  t t  

t t t t t  

t + t t t  

+ t t t t  t 

Phase 2 Phase 3 

Figure 4. Phase boundary between phase 2 and phase 3 (see figure 2) .  All spins of one 
Kagome sublattice have been reversed in both phases as explained in the text. Negative 
neighbouring spins are connected by the bold lines. 

figure 5. From Lieb and Wu (1972), we find that the zero-point entropy in the case of 
J2 = J3 is 

TT dB ln[max{l, 2(1 -cos e ) } ]  =0.324 

where Nv is the number of vertices, which is just N / 3 .  So the entropy per spin is 
only $ of the value above. At non-zero E we have ordering in either phase 2 or phase 
3 and the transition temperature is given by T, = &/ln 2. This conclusion is not so 
reliable, because of the difficulties mentioned above and is restricted to low temperature. 
But we think it is qualitatively correct. 

c l  = -  E2'0 Eg = E, = E 5  = E 6  = E 

Figure 5. Vertex weights of the modified K D P  model. 
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Since we have for J2 = J3 a very little entropy per spin of 0.108k compared to the 
KAF value of 0.502k cited before, it is not surprising that there is another phase 
transition at higher temperature. The vertices can be placed on one of three square 
sublattices, which is equivalent to choosing three main directions for the disordered 
lines. The three-state Potts model and the hard-hexagon model have also such an 
internal three-fold symmetry. The critical exponents found in the Monte Carlo simula- 
tions are in agreement with this reasoning and for J , = J ,  our model belongs to the 
same universality class as the three-state Potts model. For details we refer to § 4. 

4. Finite-temperature study 

4.1. Order parameter and Monte Carlo method 

We study the specific heat and the sublattice magnetisation by a Monte Carlo procedure 
(see Binder 1979). Since there are three sublattices, there is some ambiguity to define 
the order parameter. We find it convenient to use the following one, 

m=f(IMl+lM*I+IM30 (9) 
where the M, denote the sublattice magnetisation per spin. If J2 dominates, we measure 
the magnetisation on the Kagome sublattices and if J 3 > J 2  we choose the square 
sublattices. For the finite-size scaling analysis we also calculate the high-temperature 
susceptibility per spin 

xt = ( N / 3 k T ) ( M : +  M : +  M i )  (10) 
where N is the number of spins. Together with the specific heat these quantities enable 
us to analyse the critical behaviour of our model. In the case J2 = J 3 ,  which we discussed 
in the last section, we calculated the total magnetisation M and the total susceptibility, 
which is given by the fluctuations of M. 

We use a standard one-spin-flip importance sampling Monte Carlo procedure (see, 
e.g., Binder 1979). Up to 2000 Monte Carlo steps (MCS) per spin were omitted before 
we measured the thermodynamic quantities by averaging over 15 000-25 000 MCS per 
spin. We studied N = 3 x L x L lattices with periodic boundary conditions for 6 S L s 
72. Tests of the program were made by comparing the Monte Carlo data with the 
exact values for the specific heat and the order parameter of a small system with L = 3. 
After cooling, the low-temperature spin configurations in the case J2  = J3 were printed 
out to control the argument in § 3. 

4.2. Finite-size scaling 

The key assertion of finite-size scaling is that the critical behaviour of the finite system 
of the length L is given in the critical region by the ratio L / t (  T ) ,  where t( T )  is the 
correlation length of the infinite system (see Barber 1982). A thermodynamic quantity 
like the susceptibility x can be described near T, by the scaling relation 

X L ( T )  = L " Y * ( t ( T ) / L )  L + m  (11) 
where w is given by the ratio of critical exponents y /  v = 2 - 7 and Y, is some unknown 
function. Now the critical temperature and also w is not known a priori. To get an 
e5timate one writes 

X I  ( TI/ L'" = XI ( T ' ) /  L'" (12) 
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which defines a mapping of the temperature T +  T '  (dos Santos and  Sneddon 1981). 
At the critical temperature, where the correlation length diverges, there is a fixpoint 
of this mapping. Following Barber and Selke (1982) one plots 

t L L '  = ~ ~ ( x L / x L , ) / ~ ~ ( L /  L') (13) 

as a function of temperature for several L, L'. In the case of a second-order phase 
transition the curves 5 L L  intersect in one point, which determines an estimate of the 
critical temperature and  the exponent w .  Now in the case of a Kosterlitz-Thouless 
transition like in the X Y  model, one has to take into account that the correlation 
length is given by 

[ ( T ) - e x p [ a ( T -  TJo5] for T > T, (14) 
and  remains infinite in the critical phase for T <  T,. In the case of a six-state clock 
model one has two Kosterlitz-Thouless transitions. As before we get the scaling relation 
(Challa and  Landau 1986) 

xL = L2-v FX{ L-I exp[ a (  T - T2)-o,5]} 

mL = L-v'2 ?,,,{ L-I exp[ a (  TI - T)-O 'I} 

for T >  T2. (15) 

(16) 

For the lower transition at  TI one gets a similar relation for the order parameter 

for T < T , .  

The critical exponent 71 is predicted to vary between the values of T (  TI) =; and 
T (  T2) = and is non-universal (Jose et a1 1977). In the critical phase, where TI < T < T2, 
the correlation length is infinite and the curves [LL of (13) should touch in this regime. 
This indicates a line of critical points and  makes the Kosterlitz-Thouless behaviour 
easily visible (Barber 1982). 

4.3. Results and  discussion 

As pointed out in § 1, we are interested in antiferromagnetic N N  coupling (J1 < 0) and 
smaller ferromagnetic N N N  couplings ( J 2 ,  J3 > 0). We therefore restrict the possible 
values of the coupling constants to the straight line in the J1, J 2 ,  J3 parameter space, 
which is defined by J1 = -2(J2 + J 3 )  = constant. Finally we will get a temperature against 
( J z - J 3 )  phase diagram, which is nearly symmetric around J2  = J 3 .  So we show only 
the three cases J2 = 0, ( J 3  - J 2 )  =$ and J z  = J 3 .  All energies are given in units of 
J = ~2 + ~3 = -4.~1. 

4.3.1. Critical behaviour for  J2 = 0. The Monte Carlo data for the specific heat and the 
order parameter in the case J2 = 0 are shown in figure 6. The specific heat possesses 
two separated rounded peaks, which become nearly size independent for large L and 
we expect that the data for L = 4 8  lie very close to the values of the specific heat of 
the infinite system. In the temperature dependence of the order parameter we observe 
two 'shoulders', which are localised at temperatures where the specific heat has its two 
maxima. In the case J3 = 0, which we do  not show, we obtain qualitatively the same 
behaviour. Again the specific heat has two rounded maxima at  temperatures lying 
slightly below. 

In order to classify the critical behaviour we plot in figure 7 ( a )  the (LL' of (13) for 
several L, L'. Within the statistical errors the curves touch each other below kT*/ J = 3.2, 
which indicates a Kosterlitz-Thouless transition at  T = T* and  the occurrence of a 
line of critical points for T < T". Since the system is ordered at  low temperatures and 



Ising model on the Kagome lattice 2203 

0.3 
2.0 3.0 4.0 

kTIJ3 

I 1 

Figure 6.  Temperature dependence of the specific heat ( a )  and the order parameter ( 6 )  
for the case J ,  = 0, J ,  = - 2 J , .  The bold curve in ( a )  refers to N = 3 x 48 x 48. 
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C . 2  

0 

the ground state is sixfold degenerate, we expect that there is another phase transition 
at  lower temperatures as in the six-state clock model. As shown in figures 7(6) and 
(c )  the data scale well according to (16) and (15) respectively. With errors estimated 
from the deviation of the results from the best fit, we obtain a = 1.41 * 0.03 and for 
the critical temperatures and  exponents 

kTl/J/J ,=o = 2.50i0.4 kT2/JIJ2=,= 3.07i0.05 

7( T I )  = 0.10*0.01 7 ( T 2 )  = 0.30 * 0.03. 

This shows that (13) gives qualitatively correct results but that the convergence of 
T" + T2 for L, L'+ 00 is very slow. 

In the case J3 = 0 we obtain the same critical behaviour and  identical values of 7. 
Our value for 7 ( T2)  differs slightly from the conjectured values 7 ( T I )  = 8 and 7 ( T2)  = f 
of the six-state clock model (Jose et a1 1977), but the exponents are in agreement with 
the Monte Carlo results of Challa and Landau (1986), where T (  T2)  = 0.275 i 0.025. 
We therefore conclude that for either J2=0 or  J3=0 our model belongs to the 
universality class of the six-state clock model. 

' A N = 3 x 4 8 x 4 8  o x  

' x N = 3 x 1 2 x 1 2  A 

' N . 3 ~ 6 ~ 6  

o N = 3  x 2 4 x 2 4  o x  

A 0  

0 

A 0  
- r o  

0 0 0 .  

.A..&' 

I O  

, , . . , I . 

4.3.2. Crossover effects. We studied several cases varying the difference between J2 
and J 3 .  Decreasing lJ2 - J31 from J to J/3, the two maxima of the specific heat become 
merged. In the case J3 - J2 = J / 3  (figure 8) the specific heat shows only one peak and  
we observe two regions in the finite-size behaviour of the order parameter. For 
temperatures below k T / J  = 1.5 the order parameter is nearly size independent and  
falls off rapidly with increasing lattice size at higher temperatures. Figure 9 shows an  
intersection of the 5LL '  of (13) at  T * / J  = 1.55, which indicates a second-order phase 
transition (Barber and  Selke 1982). We estimate the critical temperature to be 
k T J J  = 1.50*0.05. 

1.5 

1 0  

5 
L., 

0.5 

0 

b 
b 

b 

1 0  1 5  2 0  
k T l J  

1 .o 

0.8 

0.6 

E /  0.4 

Figure 8. Temperature dependence of the specific heat ( a )  and the order parameter ( b )  
for the case J ,  - J z  = J j 3 .  
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- 0 . 5 -  

- 
-4 

4 '  
- 
1 

C - - -1.0 
+74 . 

- 

x 
x 
C 

. 
ii . - - 

-1.5-  

-2.01 . . . I . . . , , . . I I 
1 2  1.4 1.6 1.8 

kT lJ  

Figure 9. Plot of gLL. of (13) for the case J, - J, = J / 3  indicating a second-order transition. 

Starting with / J 2  - J3[  = J ( J 2  = 0 or J3 = 0 ) ,  we observed two Kosterlitz-Thouless 
transitions and a critical phase for TI < T < T2.  Decreasing IJ2 - J3 /  the transition 
temperatures TI  and T2 approach each other. The critical phase vanishes for lJ2 - J31 = 
J / 3  and the critical behaviour changes to second-order type. 

4.3.3. Critical behaviour f o r  J2 = J3. If J2  = J3 the ground state is infinitely degenerate 
and the is no ordering on the Kagome or square sublattices. We measure the total 
magnetisation M per spin, which approaches f at low temperatures and decreases 
rapidly for temperatures higher than kT /J  = 0.82 (figure 10). At this temperature the 
specific heat shows a very sharp peak and the susceptibility seems to diverge in the 
infinite system. Since we observed no hysteresis effects and metastability of M, we 
expect a second-order phase transition. In the critical region the thermodynamic 
quantities should then exhibit a power-law dependence of IT - T,I. Assuming a critical 
behaviour M - ( T, - T ) p  for the magnetisation and x - ( T - T,)-' for the suceptibility 
the least-squares fits for data with L = 48 and 72 lead to a critical temperature T,/ J = 
0.8207h0.0005 and to the exponents (figures l l ( a )  and ( b ) )  

p =0.12+0.01 y = 1.54h0.07. 

The assumption E , -  E - ( T,- T ) l - a '  for T < T, and E - E , -  ( T  - Tc)'-" for T > T, 
leads to a critical value of the energy E,/J = -1.885 and to the exponents (figures 
l l ( c )  and ( d ) )  

a' = 0.328 * 0.005 a = 0 . 3 2 ~  * 0.006. 

Within the errors the relation a + 2 p  + y = 2  is fulfilled and the obtained critical 
exponents agree very well with the values a = f ,  p =$  and y = y  of the hard hexagon 
model, which belongs to the universality class of the three-state Potts model (Baxter 
1982). 

As we have pointed out in § 3 ,  our model possesses for J2  = J3  a threefold symmetry 
and we therefore conclude that in this case our model belongs to the universality class 
of the three-state Potts model. 
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Figure 10. Temperature dependence of the total magnetisation ( a ) ,  the specific heat ( b )  
and the susceptibility ( c )  for the case J 2 = J 3 .  The curve in ( a )  shows the extrapolated 
behaviour of the infinite system. 

4.4. Phase diagram 

We can now summarise our results and we suggest for our model the phase diagram 
in figure 12 along the line J, = - 2 ( J , +  J 3 )  = constant. The phases 2 and 3 are very 
similar in a thermodynamic sense, which can be seen in the symmetry of the phase 
diagram. In the cases IJ2 -J31 = J we obtain a critical behaviour of the six-state clock 
and the crossover to second-order transitions is approxiately located at IJ2 - J31 = J / 3 .  
As pointed out in 0 3 there must be an intermediate phase between the phases 2 and 3, 
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Figure 11. Least-square fits of the scaling laws for J, = J3 for: ( a )  the total magnetisation 
m with M - ( T , -  T ) p  and p =0.12; ( b )  the susceptibility ,y with , y - ( T -  T c ) - y  and 
y=1.54; ( c )  the energy ( E , - E ) / J  with E c - E - ( T c - T ) ' - a ' ,  E,=-1.885 and a'=0.33; 
( d )  the energy ( E , - E ) / J  with E-E, - (T-T , ) ' - " ,  E,=-1.885 and a =0.32. 

but this is based on a theoretical argument which is only valid at low temperatures. 
We could not observe the boundaries of this phase in the Monte Carlo simulation, 
because the transition happens at very low temperatures and simulating the modified 
KDP model poses technical problems for the Monte Carlo procedure. 

In the experiments with CsOH.H,O no ordering of the protons was observed, 
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Figure 12. Phase diagram along the line J, = -2(J2 - J 3 )  = constant obtained by Monte 
Carlo simulations ( J  = J z + J 3 ) .  The dotted lines refer to second-order transitions and the 
full lines refer to Kosterlitz-Thouless transitions with a critical phase in between. At low 
temperatures there is a mixed phase as explained in 5 3. 

possible ordering of the protons could be very low as in KOH-doped ice (Leadbetter 
et a1 1984). If the system is in a ‘vertex-phase’ as described in 0 3 then it is difficult 
to find an order parameter which is also experimentally accessible. 
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